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Preliminary: Cross-domain Few-shot Classification

Few-shot classification with prototypes

Training Testing

wﬁwﬁ#g
hikes C{’ﬁ ﬁ

An example of conventional few-shot
classification tasks

Phillip Lippe, Tutorial |16: Meta-Learning - Learning to Learn, UvA DL Notebooks vl.2 Documentation.
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Preliminary: Prototypical Networks

Few-shot classification with prototypes

* Construct prototypes:

_ 1 Z
Ci_|Ci| ¥

X€C;

e Calculate similarities/distances:

X Dy
| z log(p(® = y;|x))

NCC-based loss

—d(x, c;
p(y =yilx) = exp(~d(x )

2. exp (—d(x, cj))

Snell et al., Prototypical networks for few-shot learning, NIPS 2017.
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Previous Works

Finetuning a transformation on top of
a universal pretrained backbone

Unseen Domains

Retrieve or Blend | ] Ay } Feature
] Extractors ] ] !

) Adaptation

Seen Domains

Li et al., Universal representation learning from multiple domains for few-shot classification, ICCV 2021.
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Remaining Issue

High similarities between samples
from different classes

NCC
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Theoretical Understanding of NCC-loss from HSIC

Insights behind NCC-based loss

Theorem 3.2 (Lower bound of NCC-based loss). Given a
set of normalized support representations Z = {zi}‘l’DTl =

{ho o fo= (ml)}l 7| and the corresponding labels {yz}lpTl
that includes N¢ classes from a support set Dr. Let k(- -)

be the cosine similarity function. Then, with Assumption 3.1,
the NCC-based loss (Eq. (1)) owns a lower bound:

DTl

= Z o] 2 K="

ztecC
Dl

|DT| Z Z k(zz’ +0 (k(z,2)) + const,

where zt denotes the data samples belonging to the
same class as z;, C denotes the class that z; belongs to,

(@) (k(z, z/)) denotes a high-order moment term. In addi-

tion, const = log a.N¢c, where N¢ denotes the number of
classes in task, o is a constant.
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Theoretical Understanding of NCC-loss from HSIC

Hilbert-Schmidt Independence Criterion HSIC(X,Y) = ||E[p(X)%(Y) T-E[p(X)]E[M )] 1%

Theorem 3.2 (Lower bound of NCC-based loss). Given a
D7

set of normalized support representations Z = {z;},_| = Theorem 3.4. Given a support representation set Z =
{ho o fs-(@:)Y'2T and the corresponding labels {y;}'°T' {zz}lD}'| = {hg o fy~ (:1!:,)}| 7| \where N classes are in-
that includes N¢ classes from a support set Dt. Let k(-,-) cluded, let k(-,-) be a linear kernel function on data rep-
be the cosine similarity function. Then, with Assumption 3.1, rzsengst}?s;’;f I(,-) be a label kernsl defined in Eq. (4),
the NCC-based loss (Eq. (1)) owns a lower bound: then (Z,Y) owns a lower bound:
D7 |
AAL
” D7 | " HSIC(Z,Y) >|D B Z > k(zi,2h)-
() |D|Z||Z Z“Z) ztec
ztec Al |Dr|
D7l — K
k(zi,2) ' D 22 Z D (2:,2),
|DT| Z ZZ Dr| + (k(z,z )) + const, |Dr| o | 7|
where z T denotes the data samples belonging to the same
where z* denotes the data samples belonging to the class as z;, C denotes the class that z; belongs to, z' is an
same class as z;, C denotes the class that z; belongs to, independent copy of z, A is a scale constant.

o (k(z, z )) denotes a high-order moment term. In addi-

tion, const = log a. N¢, where N¢ denotes the number of
classes in task, o, is a constant.
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Theoretical Understanding of NCC-loss from HSIC

Hilbert-Schmidt Independence Criterion

Since the constant scaling does not affect the optimization
and it is easy to obtain that the high-order moment term sat-
isfies O(k(z,z)) > yHSIC(Z, Z), where v = 21\}55,1,“’
Chax 18 a constant that satisfies Cpax > |Cc| for Ve €
{1,2,..., N¢} (see Appendix B.4 for more details), we then
can build a connection between NCC-based loss and HSIC

measure via omitting the scale constants as following:

L(0) > —HSIC(Z,Y) +yHSIC(Z, Z) + const.
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Why high similarities? Kernel.

Test power maximization

Test power of HSIC. In this paper, test power is used to
measure the probability that, for particular two dependent
distributions and the number of samples m, the null hypoth-
esis that the two distributions are independent is correctly
TWO d raWbaC kS o f the Iinear kernel . rejected. Consider a H/SEu as an unbiased HSIC estima-
. tor (e.g., U-statistic estimator), under the hypothesis that
the two distributions are dependent, the central limit theo-
rem (Serfling, 2009) holds:

* An undesirable case that HSIC value is J(ESTO, — HSIC) %> N/(0,%)
zero yet the two variables are dependent ) o
where v“ denotes the variance, — denotes convergence

ma ha en [ I ] in distribution. The CLT implies that test power can be
y Pp ) formulated as:

[Pr (mH/sEu . T) L (x/ﬁIJSIC - \/:m)]

*  We cannot further optimize a linear
where r denotes a rejection threshold and ¢ denotes the

kernel to Increase Its capabl I 't)' In standard normal CDF. Since the rejection threshold r will
d eP en d ence measure converge to a constant, and HSIC, v are constants, for rea-

sonably large m, the test power is dominated by the first
term. Thus, a feasible way to maximize the test power is to
find a kernel function to maximize HSIC/v. The intuition
of test power maximization is increasing the sensitivity of
the estimated kernel to the dependence among data samples.

Gretton et al,, A kernel statistical test of independence, NIPS 2017.
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MOKD

mein —HSIC(Z,Y;0%v,0) + YHSIC(Z, Z;0% 2, 0),

3.8, TiER HSIC(Z, Y;Jzy,e) P HSIC(Z, Z; Uzz,e)
e ozy m ’ 0zZ m

Algorithm 1 Maximizing Optimized Kernel Dependence Algorithm
Input: pre-trained backbone f4-, number of inner iterations n, learning rate ), linear transformation parameters hy, a list
of bandwidths ¥ = {07,009, ...,07},and € = le — 5.
Output: the optimal parameters for linear transformation head 6*.
# Sample a task
Sample a new task 7 = {{X®,Y*}, {X9, Y} };
Obtain the representations: Z = {hg o fy- (wz)}l):(l',
# Inner optimization for test power maximization
Maximize the test power of H/SI\C(Z, Y;ozy,60) and H/SI\C(Z, Z;0zz,0) with Eq. (6) and (7):

—_—

 —m HSIC(Z,Y 02y .0). jx _ oo HSIC(Z,Z:072.,6)
Ozy = Maxy Vvzyte 202z = Xs Vvzz+te
# Outer optimization for dependence optimization

fori =1tondo .
Obtain the representations: Z = {hg o fy- (wz)}l)__(ll
Compute H/SE(Z, Y,0%y,0) and H/SE(Z, Z;0%4,0) with Eq. (6) for loss:
L(Z,Y;0) = —HSIC(Z,Y, 0%y, 0) + vHSIC(Z, Z; 0% ,,6)
Update parameters:
0+ 60 —nVeL(Z,Y;0)
end for
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Experiments

Meta-Dataset
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Triantafillou et al., Meta-dataset: A dataset of datasets for learning to learn from few examples, ICLR 2020.
Requeima et al. Fast and flexible multi-task classification using conditional neural adaptive processes. NeurlPS 2019.
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Experiments

Main results: train on ImageNet only

Table 1. Results on Meta-Dataset (Trained on ImageNet Only). Mean accuracy and 95% confidence interval are reported.

Datasets Finetune ProtoNets ProtoNets(large) BOHB FP-MAML ALFA+FP-MAML FLUTE SSL-HSIC URL | MOKD(Ours)
ImageNet 458+1.1 50.5+1.1 53.7£1.1 51.9+1.1 49.5+1.1 52.8+1.1 46.9+1.1 55.5+1.1 57.3+1.1 | 57.3+1.1
Omniglot 60.911.6 60.0+1.4 68.5+1.3 67.6+1.2 634413 61.9+1.5 61.6+1.4 66.411.2 69.4+1.2 70.9+1.3
Aircraft 68.71+1.3 53.1£1.0 58.0£1.0 54.1£0.9 56.0+1.0 63.4+1.1 48.5+1.0 49.51+0.9 57.6£1.0 59.8+1.0
Birds 57.3+1.3 68.8+1.0 74.1+0.9 70.7£0.9 68.7+1.0 69.8+1.1 47941.0 71.6+0.9 72.940.9 73.61+0.9
Textures 69.01-0.9 66.610.8 68.840.8 68.31+0.8 66.540.8 70.8+0.9 63.840.8 72.240.7 75.240.7 76.110.7
Quick Draw 42.6+1.2 49.0+1.1 53.3%1.0 50.3%1.0 51.54+1.0 59.2+1.2 57.5+1.0 54.241.0 57.9+1.0 61.21+1.0
Fungi 38.2+1.0 39.7+1.1 40.74+1.2 414411 40.0+1.1 415412 31.8+1.0 4344+1.1 46.2+1.0 47.0+1.1
VGG Flower 85.54+0.7 85.3+0.8 87.04£0.7 87.3+0.6 87.240.7 86.0+0.8 80.140.9 85.5+0.7 86.91+0.6 88.510.6
Traffic Sign 66.81+1.3 47.1%+1.1 58.1+1.1 51.84+1.0 48.8+1.1 60.8+1.3 46.5+1.1 50.541.1 61.24+1.2 61.61+1.1
MSCOCO 349+1.0 41.0%1.1 41.7+1.1 48.0+1.0 43.7+1.1 48.1%1.1 41.4%+1.0 51.44+1.0 53.0£1.0 55.31+1.0
MNIST - - - - - - 80.840.8 77.01+0.7 86.21+0.7 88.310.7
CIFAR-10 - - - - - - 65.440.8 71.01+0.8 69.540.8 72.210.8
CIFAR-100 - - - - - - 52.7+£1.1 59.0£1.0 62.0+1.0 63.11+1.0
Average Seen 45.8 50.5 53.7 519 49.5 52.8 46.9 55.5 57.3 57.3
Average Unseen - - - - - - 56.5 62.5 66.6 68.1
Average All - - - - - - 55.8 62.0 65.9 67.3
Average Rank 7.1 8.4 4.6 55 6.8 44 8.9 49 2.8 | 14

! The results on URL and MOKD are the average of 5 reproductions with different random seeds.
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Experiments

Main results: train on all datasets

Table 2. Results on Meta-Dataset (Trained on All Datasets). Mean accuracy and 95% confidence interval are reported.

Datasets ProtoMAML CNAPS S-CNAPS SUR URT Tri-M FLUTE 2LM SSL-HSIC URL | MOKD
ImageNet 46.5+ 1.1 50.841.1 584 +1.1 562+ 1.0 56.8 £ 1.1 58.6 + 1.0 518 1.1 58.0 3.6 565+ 1.2 573+ 1.1 573 £ 1.1
Omniglot 827+ 1.0 91.740.5 91.6 £+ 0.6 94.1 £ 04 942 + 04 92.0 + 0.6 9324+ 0.5 953 + 1.0 92.0 0.9 94.1 + 04 94.2 + 0.5
Aircraft 7524 0.8 83.740.6 82.0 £ 0.7 855+ 0.5 858 +£0.5 82.8 +0.7 872+ 0.5 882+ 0.5 873 +0.7 88.2+ 0.5 88.4 £ 0.5
Birds 69.9+ 1.0 73.61+0.9 74.8 £ 0.9 71.0 £ 1.0 76.2 0.8 753 £ 0.8 792 £ 0.8 81.8 £+ 0.6 78.1 £ 1.1 80.2 £ 0.7 804 + 0.8
Textures 68.2+ 1.0 59.540.7 68.8 £+ 0.9 71.0 £ 0.8 71.6 0.7 712+ 038 68.8 0.8 763 2.4 752+ 08 76.2 + 0.7 76.5 £+ 0.7
Quick Draw 66.84 0.9 74.740.8 76.5 +0.8 81.8 £ 0.6 82.4 1 0.6 773 £ 0.7 79.5 £ 0.7 783 £ 0.7 81.4 +0.7 822+ 0.6 822+ 0.6
Fungi 42.0+£1.2 50.241.1 46.6 = 1.0 643 £ 0.9 64.0 £ 1.0 485+ 1.0 58.1+ 1.1 69.6 + 1.5 63.5+1.2 68.7 £ 1.0 68.6 + 1.0
VGG Flower 88.74 0.7 88.940.5 90.5 £ 0.5 829 +0.8 87.9 + 0.6 90.5 £ 0.5 91.6 0.6 90.3 +£0.8 90.9 + 0.8 919+ 0.5 92.5 + 0.5
Traffic Sign 524 + 1.1 S6!SEEIN 572+ 1.0 ST0=E 0 482 £ 1.1 63.0 & 1.0 584+ 1.1 63.6 £ 1.5 597+ 13 633+ 12 64.5 + 1.1
MSCOCO 417+ 1.1 39.4 £1.0 489 £+ 1.1 S210:=E1M 515+ 1.1 528 £ 1.1 50.0 £ 1.0 57.0 + 1.1 514+ 1.1 542+ 1.0 555+ 1.0
MNIST - - 94.6 + 0.4 943 + 0.4 90.6 &+ 0.5 96.2 + 0.3 95.6 £ 0.5 94.7 £ 0.5 934 1+ 0.6 947 + 0.4 95.1 + 04
CIFAR-10 - - 749 + 0.7 66.5 + 0.9 67.0 + 0.8 754 £+ 0.8 78.6 + 0.7 715+ 0.9 70.0 & 1.1 719 £+ 0.8 72.8 + 0.8
CIFAR-100 - - 613 £ 1.1 569 £+ 1.1 S7:3EEN0) 62.0 + 1.0 67.1 +1.0 60.0 £ 1.1 618 £ 1.1 629 £ 1.0 63.9 +1.0
Average Seen 67.5 71.6 73:7 75.9 774 76.2 76.2 79.7 76.5 79.9 80.0
Average Unseen - - 67.4 64.1 62.9 69.9 69.9 69.4 68.2 69.4 70.3
Average All - - 1.2 713 71.8 73.8 73.8 75.7 74.6 75.8 76.3
Average Rank - - 72 73 6.4 52 5:2 3.4 55 3.1 | 22

I Results of URL are the average of 5 reproductions with different random seeds. The reproductions are consistent with the results reported on their website. The results of our method are the average of
5 random reproduction experiments. The ranks considers all 13 datasets and are calculated only with the methods in the table.
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Experiments

Analyses
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Figure 3. Quantitative analysis of ~y. (a). Effect of v on accuracy of ImageNet dataset; (b). Effect of v on accuracy of MNIST dataset;
(c). Performance gaps between MOKD w / w.o. HSIC(Z, Z); (d). Test accuracy curves of MOKD w. / w.o. HSIC(Z, Z) on ImageNet

Table 3. Comparisons of MOKD with different characteristic kernels.
Datasets  ImageNet Omniglot  Aircraft Birds DTD

QuickDraw Fungi VGG.Flower Traffic Sign MSCOCO  MNIST
Gaussian  57.3%£1.1 94240.5 884+0.5 804408 76.5+0.7 82.240.6
IMQ 57.3+1.1 943405 88.0+0.5 80.5+0.8 762407 82.3+0.6

CIFAR1I0 CIFAR100

68.61+1.0 92.5+0.5 64.5+1.1 555+1.0 95.1+04 72.8+0.8 63.91+1.0
67.7+1.0 92.1£0.5 63.8+1.1 548+1.0 954404 72.7+0.8 63.7£1.0
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Experiments

Visualization results

(a) Omniglot (21 classes)
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Summary

O Empirically, we find that there exist high similarities between NCC-learned representations of data
from different classes, which may further induce uncertainty and result in misclassification of data.

O Theoretically, we build a connection between NCC-based loss and kernel HSIC measure and
demonstrate that both of them maximize the similarities among samples within the same class while
minimize the similarities between samples from different classes.

O Technically, we propose a bi-level framework, MOKD, to first maximize the test power of kernels
adopted in kernel HSIC and then optimize the kernel HSIC to control the dependence respectively
between representations and labels and among all representations.

O Empirically, extensive experiments under several settings are conducted to verify the effectiveness of
MOKD in improving generalization performance and alleviating the high similarities between samples.
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